Actomyosin contraction of the posterior hemisphere is required for inversion of the Volvox embryo.
نویسندگان
چکیده
During inversion of a Volvox embryo, a series of cell shape changes causes the multicellular sheet to bend outward, and propagation of the bend from the anterior to the posterior pole eventually results in an inside-out spherical sheet of cells. We use fluorescent and electron microscopy to study the behavior of the cytoskeleton in cells undergoing shape changes. Microtubules are aligned parallel to the cell's long axis and become elongated in the bend. Myosin and actin filaments are arrayed perinuclearly before inversion. In inversion, actin and myosin are located in a subnuclear position throughout the uninverted region but this localization is gradually lost towards the bend. Actomyosin inhibitors cause enlargement of the embryo. The bend propagation is inhibited halfway and, as a consequence, the posterior hemisphere remains uninverted. The arrested posterior hemisphere will resume and complete inversion even in the presence of an actomyosin inhibitor if the anterior hemisphere is removed microsurgically. We conclude that the principal role of actomyosin in inversion is to cause a compaction of the posterior hemisphere; unless the equatorial diameter of the embryo is reduced in this manner, it is too large to pass through the opening defined by the already-inverted anterior hemisphere.
منابع مشابه
Controlled enlargement of the glycoprotein vesicle surrounding a volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis.
Here, we report our analysis of a mutant of Volvox carteri, InvB, whose embryos fail to execute inversion, the process in which each Volvox embryo normally turns itself inside-out at the end of embryogenesis, thereby achieving the adult configuration. The invB gene encodes a nucleotide-sugar transporter that exhibits GDP-mannose transport activity when expressed in yeast. In wild-type embryos, ...
متن کاملA revision of the cell lineages recently reported for Volvox carteri embryos
Volvox offers a unique opportunity to study the segregation of reproductive potential during development of a multicellular organism. At the sixth cleavage division of an asexual embryo of Volvox carteri, strain HK 10, one half of the 32 cells typically cleave unequally to yield 16 large gonidial (reproductive) initials and 16 smaller somatic initials, while the remaining cells divide equally t...
متن کاملReporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri.
The multicellular alga Volvox is an attractive model for the study of developmental processes. With the recent report of successful transformation, regulated promoters as well as reporter genes working in this organism are now required. The Volvox genes encoding arylsulfatase and the extracellular glycoprotein ISG are strictly regulated. The former is transcribed only under conditions of sulfur...
متن کاملDynamics of a Volvox embryo turning itself inside out.
Deformations of cell sheets are ubiquitous in early animal development, often arising from a complex and poorly understood interplay of cell shape changes, division, and migration. Here, we explore perhaps the simplest example of cell sheet folding: the "inversion" process of the algal genus Volvox, during which spherical embryos turn themselves inside out through a process hypothesized to aris...
متن کاملA volvox inversionless mutant highlights the importance of the extracellular matrix in morphogenesis.
Volvox is a multicellular spherical green alga that is closely related to the more widely studied unicellular Chlamydomonas. Volvox is a fascinating creature that serves as a useful model system for investigating the evolution of multicellularity and the regulation of cell differentiation (reviewed in Kirk and Nishii, 2001). An adult Volvox, called a spheroid, consists of several thousand small...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 126 10 شماره
صفحات -
تاریخ انتشار 1999